الخميس، 30 ديسمبر 2021

Measurement tools in the chemical laboratory

Lab tools

The methods of analyzing and measuring in chemistry, at the present time, have become more advanced in terms of precision and variety. Humans have become dependent on them in all the fields of life including the environment, food, health, agriculture, industry and others. The importance of measurement in chemistry is due to the fact that it provides us with necessary information and quantitative data to allow us to use the required procedures and the appropriate practices.

الاثنين، 27 ديسمبر 2021

Quality control in laboratory

 Quality control 

encompasses all activities used to bring a system into statistical control.

The most important facet of quality control is a set of written directives describing all relevant laboratory-specific, technique-specific, sample-specific,method-specific, and protocol specific operations.

Good laboratory practices (GLPs)

 describe the general laboratory operations that need to be followed in any analysis.  These practices include 

1- recording data and maintaining records.

2- using chain-of-custody forms for samples that are submitted for analysis.

3- specifying and purifying chemical reagents.

4- preparing commonly used reagents. 

5- cleaning and calibrating glassware. 

6- training laboratory personnel. 

7- maintaining the laboratory facilities. 

8- general laboratory equipment.


Good measurement practices (GMPs) 

describe operations specific to a technique. In general, GMPs provide instructions for maintaining, calibrating, and using the equipment and instrumentation that form the basis for a specific technique. 

For example, a GMP for a titration describes how to calibrate a buret (if nec essary), how to fill a buret with the titrant, the correct way to read the volume of titrant in the buret, and the correct way to dispense the titrant.

The operations that need to be performed when analyzing a specific analyte in a specific matrix are defined by a standard operations procedure (SOP). 


The SOP

describes all steps taken during the analysis, including: how the sample is processed in the laboratory, the analyte’s separation from potential interferents, how the method is standardized, how the analytical signal is measured, how the data are transformed into the desired result, and the quality assessment tools that will be used to maintain quality control. If the laboratory is responsible for sampling, then the SOP will also state how the sample is to be collected and preserved and the nature of any prelaboratory processing. 

A SOP may be developed and used by a single laboratory, or it may be a standard procedure approved by an organization such as the American Society for Testing and Materials or the Federal Food and Drug Administration.

Although an SOP provides a written procedure, it is not necessary to follow the procedure exactly as long as any modifications are identified. On the other hand, a protocol for a specific purpose (PSP), which is the most detailed of the written quality control directives, must be followed exactly if the results of the analysis are to be accepted. In many cases the required elements of a PSP are established by the agency sponsoring the analysis. For example, labs working under contract with the Environmental Protection Agency must develop a PSP that addresses such items as sampling and sample custody, frequency of calibration, schedules for the preventive maintenance of equipment and instrumentation, and management of the quality assurance program.

Two additional aspects of a quality control program deserve mention. 

The first is the physical inspection of samples, measurements and results by the individuals responsible for collecting and analyzing the samples.

 For example, sediment samples might be screened during collection, and samples containing “foreign objects,” such as pieces of metal, be discarded without being analyzed. Samples that are discarded can then be replaced with additional samples. When a sudden change in the performance of an instrument is observed, the analyst may choose to repeat those measurements that might be adversely influenced. The analyst may also decide to reject a result and reanalyze the sample when the result is clearly unreasonable. By identifying samples, measurements, and results that may be subject to gross errors, inspection helps control the quality of an analysis. A final component of a quality control program is the certification of an analyst’s competence to perform the analysis for which he or she is responsible.7 Before an analyst is allowed to perform a new analytical method, he or she may be required to successfully analyze an independent check sample with acceptable accuracy and precision. The check sample should be similar in composition to samples that the analyst will routinely encounter, with a concentration that is 5 to 50 times that of the method’s detection limit.

الخميس، 23 ديسمبر 2021

أوميكرون " Omicron " - الطفرة الجديدة

 معلومات عن متحور أوميكرون " Omicron "

" SARS-CoV-2 Omicron variant"

متحور أوميكرون (الطفرة الجديدة من كورونا ) لقد أكتشفت منظمة الصحة العالمية  هذا المتحور لاول مرة فى 24 نوفمبر 2021 عن طريق جنوب افريقيا والتى تعد الدولة الاولى التى أكتشفت هذا المتحور وارسالت الى منظمة الصحة العالمية بالخبر

الخميس، 2 ديسمبر 2021

Relationship between Mass and Wavelength

Relationship between Mass and Wavelength (Elaraby equation)

Ali Elsayed Elaraby

-------------------------------------------------------------------

Abstract  

In physics, El araby theory of wave and mass for short, is a scientific theory regarding Relationship between Mass and Wavelength. the theory is based on two postulates or two laws

1-    The rest energy is related to the mass according to the celebrated Einstein equation: E=m*C2                       

2-    Planck explained further that the respective definite unit, E, of energy should be proportional to the respective characteristic oscillation frequency ʋ of the hypothetical oscillator, and he expressed this with the constant of proportionality h : E= h*ʋ

 


El araby theory

Matter possesses the properties of particles and the properties of waves by a certain amount that depends on El araby equation , so that the higher the mass, the lower the wavelength and vice versa in the partial frame

Result

There is an inverse relationship between wavelength λ and mass m and calculate the proportionality constant K from the  theoretically measurements

References

1.    Albert Einstein (2001). Relativity: The Special and the General Theory (Reprint of 1920 translation by Robert W. Lawson ed.). Routledge. p. 48. ISBN 978-0-415-25384-0.

2.     Edwin F. Taylor & John Archibald Wheeler (1992). Spacetime Physics: Introduction to Special Relativity. W. H. Freeman. ISBN 978-0-7167-2327-1.

3.     Kragh, H. (1999). Quantum Generations. A History of Physics in the Twentieth Century. Princeton University Press. ISBN 978-0-691-01206-3

4.     Kramm, Gerhard; Mölders, N. (2009). "Planck's Blackbody Radiation Law: Presentation in Different Domains and Determination of the Related Dimensional Constant". Journal of the Calcutta Mathematical Society. 5 (1–2): 27–61. arXiv:0901.1863. Bibcode:2009arXiv0901.1863K.

5.     Kuhn, T. S. (1978). Black–Body Theory and the Quantum Discontinuity. Oxford University Press. ISBN 978-0-19-502383-1.


من سم الأفعى دواء جديد يعالج الجلطات الدموية بأستخدام تقنية PEGylation

من سم الأفعى دواء جديد يعالج الجلطات الدموية بأستخدام تقنية PEGylation